LUCIE, a noncontact, non-destructive, laser-ultrasound machine, will be tested on a composite fuselage section at Technocampus in France to determine its production feasibility.
On Oct. 20, Technocampus (Pays de la Loir region, France), the R&D teams of Airbus Nantes, EADS Innovation Works (IW) and Ecole des Mines, took delivery of LUCIE, a noncontact, non-destructive, laser-ultrasound machine that will be used to detect sub-surface flaws in composite aerostructures.
This machine, an iPLUS III developed and manufactured by iPhoton (Ft. Worth, Texas) but supplied to Technocampus via Tecnatom (Madrid, Spain), will allow researchers to demonstrate the advantages of the laser-ultrasonic technology relative to classic ultrasonic technology. The non-destructive testing capabilities of LUCIE will be evaluated in the next months on a nose fuselage demonstrator and other structures.
Under current composite inspection technology using ultrasound, inspection is possible only by direct contact or through a coupling agent. Usually, the part is immersed in a water tank or sprayed with water jets. Since 2007, Airbus Nantes has developed, with help from EADS, a laser-based inspection technology used with an articulated arm equipped with laser beams to generate ultrasonic waves without contact. The flexibility in movements and control of the technology is especially adapted to the inspection of composite parts of large dimension and with complex geometries, that could be applied tomorrow to future programs such as the Airbus A320neo.
LUCIE laser-based ultrasonic inspection system. (Source: Technocampus)
The inaugration of LUCIE was celebrated in presence of Jany Gueret, president of GIP Technocampus; Gilles Cohenca, industrial architect R&T Airbus; Didier Guedra Degeorges, vice-president d’EADS Innovation Works; and Michel Bacou, director business relationship, Ecole des Mines de Nantes.
LUCIE inside composite fuselage section. (Source: Technocampus)
Source : Composites World