Monday, January 31, 2011

Non destructive testing in the aerospace industry

"The aerospace industry is leading the way in the application of non-destructive testing techniques"
The simplest way to find out about a component’s structural or material properties is to quite literally push it to breaking point.

But while destructive testing can be an effective and economical solution for high-volume, low-cost components, it’s clearly undesirable for larger, more expensive systems. If you want to test the limits of a multi-million-pound jet engine, destroying it is a pretty drastic way to advance your knowledge.

NDT is an essential tool in the aerospace industry 

Fortunately, there is an alternative. And a range of so-called non-destructive testing (NDT) techniques - which can be used to probe structures and materials either before they enter use or as part of a maintenance programme - are now widely used across a range of engineering sectors.

Thursday, January 6, 2011

Quality Test & Inspection: Data Leads to Good Leak Test Decisions

"Through the adoption of new leak testing approaches that provide comprehensive data about the entire leak test cycle, manufacturers can get more out of their leak test"
Leak testing is used in many industries, from engine assembly to medical device manufacturing. Source: Sciemetric Instruments 

Leak testing is an important and widely deployed nondestructive test methodology used by many manufacturers to assess the quality of fabricated parts. The fact is that nothing is 100% sealed; everything leaks, whether it is supposed to or not. The challenge for manufacturers is to determine whether the leakage is acceptable from product quality and regulatory compliance perspectives.

The majority of leak testing systems that are available today focus primarily on determining a single value that characterizes whether the leak rate is acceptable under internal standards and regulatory directives. While this traditional method may detect 80% of the typical defects, the other 20% will typically represent 80% of the after sale warranty cost impacts.

Tuesday, January 4, 2011

GKN A350 spar program update

"Automated fiber placement to replace established tape laying/drape forming process for the composite rear spars on the new midsize commercial passenger jet"

Headquartered in Redditch, Worcestershire, U.K., GKN Plc’s Aerospace Division continues its strong growth, based to a large extent on its expertise in the production of composite structures. Even the 50 percent of the business that is not focused on composites is based primarily on materials technologies, such as complex titanium aero-engine components and cockpit canopies with vacuum-deposited surfaces to enhance stealth performance. This should not come as a surprise, because GKN’s first use of materials technology to gain market share was in the 1860s, when it dominated the railroad supply business by being the first company in the U.K. to make steel by the cost-effective Bessemer process. The company produced more than 56 million lb (25,400 metric tonnes) of steel per year by 1871.

Fig. 1: The inner rear spar demonstrator for the Airbus A350 XWB. The height of the spar at the root end is nearly 2m/6.5 ft and it tapers to approximately 0.25m/10 inches at the wingtip. Source: GKN Aerospace

As GKN Aerospace has expanded its business, it has acquired companies outside the U.K.

Monday, January 3, 2011

Critical composite structures delivered for major aerospace programs

"ITT Corp. reported on Nov. 19 that it delivered its first major composite structural sponson subassemblies for the CH-53K heavy-lift helicopter to Sikorsky Aircraft Corp.; Spirit AeroSystems has completed a mold/cure cycle for one the panels that make up the longest section of the Airbus A350 XWB’s all-carbon fiber fuselage"

ITT Corp. (Salt Lake City, Utah) reported on Nov. 19 that it delivered its first major composite structural sponson subassemblies for the CH-53K heavy-lift helicopter to Sikorsky Aircraft Corp. (a subsidiary of United Technologies Corp., Stratford, Conn.). The delivery is the culmination of nearly three years of advanced design, development, testing and manufacturing activities, according to ITT. The CH-53K is the latest iteration of Sikorsky’s legacy helicopters, used by the U.S. Marine Corps since 1963. The K model, also known as Super Stallion, will offer significantly greater payload capacity than its predecessor and is currently the largest maritime helicopter in the world.


The sponson assemblies are a significant technology advancement, with composite materials applied to military aircraft that operate in harsh environments.